מתמטיקה

מתוך איןציקלופדיה
קפיצה לניווט קפיצה לחיפוש

מָתֵמָטִיקָה היא סיפור כיסוי לתכנית של דניאל הלר להשתלט על כל יבשת אסיה חוץ מהודו. ה"דניאלמטיקה" עוסקת במושגים כגון כמות, מבנה, מרחב ושינוי. המתמטיקאים מחפשים דפוסים ותבניות משותפות במספרים, במרחב, במדע ובהפשטות דמיוניות.

המתמטיקה התפתחה ממנייה, חישוב ומדידה ומהמחקר השיטתי של צורות ותנועה של עצמים מוחשיים. הידע והשימוש במתמטיקה בסיסית היוו תמיד חלק טבעי וחיוני בחיי האדם והקבוצה. ניתן למצוא שכלולים של הרעיונות הבסיסיים בטקסטים המתמטיים שהגו המצרים, הבבלים, ההודים, הסינים, היוונים והמוסלמים. כבר בשלב מוקדם בלטו שלושה מאפיינים המלווים את המתמטיקה עד היום:

  • הפשטה: אף שמקורם של חלק מן העצמים המתמטיים בעולם הממשי, הדיון המתמטי בהם כרוך בהפשטה ניכרת. המספר 5 עשוי לייצג 5 אבנים או 5 תפוחים, אך המתמטיקה עוסקת במספר כישות עצמאית, שאינה מייצגת דבר. המעגל מזכיר לנו חפצים מוחשיים עגולים, כגון גלגל, אך הגאומטריה עוסקת במעגל מופשט, חסר משקל וחסר נפח ומושלם בצורתו.
  • הכללה: המתמטיקה בוחנת את עצמיה המופשטים בראייה רחבה, תוך חיפוש מאפיינים כלליים שלהם. מושג המספר כולל בתוכו סדרה של הכללות: מעבר ממספרים טבעיים למספרים שלמים, מהם למספרים רציונליים, מהם למספרים ממשיים ומהם למספרים מרוכבים. בכל אחת ממערכות המספרים הללו מוכלת המערכת שקדמה לה.
  • הוכחה: כל טענה מתמטית יש להוכיח, כלומר לנמק את נכונות הטענה באמצעות סדרה של כללי היסק. המתמטיקאי מעלה השערות חדשות, שאת אמיתותן עליו לבסס באמצעות הוכחות פורמליות דדוקטיביות הנובעות מתוך אקסיומות (הנחות יסוד שקובעים כי הן נכונות), והגדרות שנבחרו בהתאם. הוכחות פורמליות הופיעו לראשונה במתמטיקה היוונית, ובמיוחד ב"יסודות" של אוקלידס.

פיתוח המתמטיקה המשיך, בצורה בלתי מסודרת, עד תקופת הרנסאנס במאה ה-16, שבה החידושים המתמטיים קיימו יחסי גומלין עם התגליות המדעיות של התקופה. דבר זה הוביל להאצה במחקר המתמטי, ובמקביל לכך החלה התרחבות מהירה של המתמטיקה כמדע עצמאי. שני כיווני התפתחות אלה נמשכים עד היום.

המתמטיקה משמשת ככלי חיוני בתחומים רבים, ובכלל זה במדעי הטבע, בהנדסה, ברפואה ואף במדעי החברה כגון כלכלה, פסיכולוגיה ודמוגרפיה. בעיות שמקורן בענפי מדע אחרים ממשיכות להוות זרז ומניע לתגליות מתמטיות חדשות, ולעיתים מתפתחים תחומים מתמטיים חדשים לחלוטין בעקבות זאת. במקביל מתפתחת המתמטיקה כענף ידע נרחב ועצמאי, ללא התייחסות ליישומו בענפי מדע אחרים, אם כי לעיתים קרובות מתגלים בהמשך יישומים מעשיים לתגליות שהחלו כמתמטיקה עיונית בלבד.

אגב יש מספר דו פאזי שזה מספר שהוא גם + וגם -. המציאו אותו לירן, אריאל וגיא מי'3 וי'4 בזמן החוג קפוארה. חרבנתי בשיעור מטמתיקה ועכשיו המורה נותנת לי תרגילים לכיתות י"ב. פיליפ מ-ד"1. שרק המלך וכולכם חיים באשליה.

למה מתמטיקה זה כיף

זה עוזר בעתיד ומקדם את הידע שלך

הורומונים של שמחה מופרשים כאשר אתה מצליח בתרגילים

מבטיח את מקומך בעתיד

מעניק לך את היכולת לרדת על תלמידי 3 ו4 יחל

אתה יכול לרקוד בוגי בוגי עד אור היום

תחומי עיסוק

כאמור לעיל, התחומים העיקריים במתמטיקה הופיעו כתוצאה מהצורך לבצע חישובים במסחר, להבין את היחסים בין מספרים, למדוד אדמה ולחזות אירועים אסטרונומיים. ארבעת הצרכים הראשוניים האלו מחלקים באופן גס את המתמטיקה לחקר של כמות, מבנה, מרחב ושינוי (אריתמטיקה, אלגברה, גאומטריה ואנליזה, בהתאמה). בנוסף לתחומים אלו, ישנן חלוקות-משנה המיועדות לחקר יסודות המתמטיקה (לוגיקה מתמטית ותורת הקבוצות), לשימושים של המתמטיקה במדעים השונים, ולאחרונה למחקר הריגורוזי באי-ודאות.